成全在线观看免费完整的,成全高清免费完整观看,成全在线观看免费完整,成全视频免费观看在线观看第14集预告电视剧,成全免费高清在线观看第5季预告,成全视频高清免费观看电视剧

xBGAS: A Global Address Space Extension on RISC-V for Scalable High Performance Computing

  報(bào)告時(shí)間: 2023年8月30日(周三)上午 10:00-11:30

  報(bào)告地點(diǎn): 計(jì)算所446會(huì)議室

  主講人:王翕(清華大學(xué))
  
  摘要:
  Emerging data-intensive applications, such as graph analytics and data mining, exhibit tremendous datasets and irregular memory access patterns. Research has shown that these memory-bound applications are unable to effectively leverage the principles of data locality and regular memory accesses within traditional cache-based memory systems to mitigate the “memory-wall” issue. The expansion of data volume has simultaneously driven a transition from monolithic architectures towards systems integrated with discrete and distributed nodes in large-scale computing systems. As such, multi-layered software infrastructures have become essential to bridge the gap between heterogeneous commodity devices. However, operations across synthesized components with divergent interfaces inevitably lead to redundant software footprints and undesired latency. Therefore, a scalable and unified computing platform, capable of supporting efficient interactions between individual components, is desirable for large-scale data-intensive applications. 
  In our presentation, we will unveil the Extended Base Global Address Space, or xBGAS, a novel extension for the RISC-V instruction set architecture (ISA), designed for scalable and high-performance computing. The xBGAS extension revolutionizes the landscape by providing native ISA-level support for direct remote shared memory access, achieved through the mapping of remote objects into an extended system address space. Further, we will walk through the performance ramifications of xBGAS through an insightful examination of both software and hardware, employing a wide range of data-intensive workloads.
  
  個(gè)人簡(jiǎn)介:
  王翕博士,清華大學(xué)博士后研究員,德克薩斯理工大學(xué)客座研究科學(xué)家 (Adjunct Research Scientist), 專(zhuān)注于計(jì)算機(jī)體系結(jié)構(gòu)的科研工作。于2020年在美國(guó)德克薩斯理工大學(xué)取得計(jì)算機(jī)科學(xué)博士學(xué)位, 擁有超過(guò)8年RISC-V體系結(jié)構(gòu)設(shè)計(jì)經(jīng)驗(yàn),含括處理器設(shè)計(jì),高性能計(jì)算,并行計(jì)算,編譯器,二進(jìn)制轉(zhuǎn)譯,敏捷開(kāi)發(fā)工具鏈等領(lǐng)域的科研工作。參與/主持多項(xiàng)由美國(guó)國(guó)家自然科學(xué)基金,美國(guó)國(guó)防部,美國(guó)能源部,深圳市科創(chuàng)委, RISC-V國(guó)際基金會(huì)資助的科研項(xiàng)目。科研成果在 DAC, IPDPS, HPDC, ICPP, TC, TOCS等國(guó)際頂級(jí)會(huì)議和期刊上發(fā)表論文,并榮獲IPDPS 2021年度最佳論文獎(jiǎng),ISSCC 2023 Code-a-Chip芯片設(shè)計(jì)獎(jiǎng)等國(guó)際學(xué)術(shù)會(huì)議獎(jiǎng)項(xiàng)??蒲谐晒D(zhuǎn)化被美國(guó)西北太平洋國(guó)家實(shí)驗(yàn)室 (PNNL),  阿貢國(guó)家實(shí)驗(yàn)室 (ANL), 勞倫斯伯克利國(guó)家實(shí)驗(yàn)室(LBNL), RISC-V國(guó)際基金會(huì), 美光科技, 大眾, 英特爾, 谷歌, 等機(jī)構(gòu)和企業(yè)采納使用。

 

  

吴江市| 徐州市| 皮山县| 屯昌县| 杭锦旗| 会理县| 成武县| 房产| 邵武市| 祁东县| 宁阳县| 喜德县| 惠来县| 德保县| 炎陵县| 永宁县| 兴化市| 两当县| 武隆县| 横山县| 元谋县| 宾阳县| 诸城市| 怀集县| 象州县| 汝城县| 镇赉县| 锦屏县| 师宗县| 卢氏县| 阜新市| 吴川市| 阳谷县| 嘉鱼县| 安庆市| 桦川县| 子长县| 南安市| 柳河县| 百色市| 喜德县|